CS369N: Beyond Worst-Case Analysis Lecture #5: Self-Improving Algorithms

نویسنده

  • Tim Roughgarden
چکیده

Last lecture concluded with a discussion of semi-random graph models, an interpolation between worst-case analysis and average-case analysis designed to identify robust algorithms in the face of strong impossibility results for worst-case guarantees. This lecture and the next two give three more analysis frameworks that blend aspects of worstand average-case analysis. Today’s model, of self-improving algorithms, is the closest to traditional averagecase analysis. The model and results are by Ailon, Chazelle, Comandar, and Liu [1].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CS 264 : Beyond Worst - Case Analysis Lecture # 19 : Self - Improving Algorithms ∗

The last several lectures discussed several interpolations between worst-case analysis and average-case analysis designed to identify robust algorithms in the face of strong impossibility results for worst-case guarantees. This lecture gives another analysis framework that blends aspects of worstand average-case analysis. In today’s model of self-improving algorithms, an adversary picks an inpu...

متن کامل

CS369N: Beyond Worst-Case Analysis Lecture #2: Models of Data in Online Paging

∗ c ©2009–2010, Tim Roughgarden. Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford, CA 94305. Email: [email protected]. A good general reference for this section and the next is [4, Chapter 3]. A more general model allows arbitrary changes to the cache at every time step, whether or not there is a hit or miss, with the cost incurred equal to the...

متن کامل

CS369N: Beyond Worst-Case Analysis Lecture #9: From Average-Case Analysis to Instance Optimality∗

This is the strongest-possible optimality notion for an algorithm (assuming that α is small) and, as such, for many problems instance optimal algorithms do not exist (recall HW #1). There are several more attainable versions of instance optimality that remain meaningful (recall also Lecture #1). Today we investigate restricting the algorithm B on the right-hand side of (1) to lie in some restri...

متن کامل

CS 264 : Beyond Worst - Case Analysis Lecture # 20 : Algorithm - Specific Algorithm Selection ∗

A major theme of CS264 is to use theory to derive good guidance about which algorithm to use to solve a given problem in a given domain. For most problems, there is no “one size fits all” algorithm, and the right algorithm to use depends on the set of inputs relevant for the application. In today’s lecture, we’ll turn this theme into a well-defined mathematical problem, formalized via statistic...

متن کامل

CS 264 : Beyond Worst - Case Analysis Lecture

The last few lectures discussed several interpolations between worst-case and average-case analysis designed to identify robust algorithms in the face of strong impossibility results for worst-case guarantees. This lecture gives another analysis framework that blends aspects of worstand average-case analysis. In today’s model of self-improving algorithms, an adversary picks an input distributio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010